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ABSTRACT In principle, whole-genome sequencing (WGS) can predict phenotypic
resistance directly from a genotype, replacing laboratory-based tests. However, the
contribution of different bioinformatics methods to genotype-phenotype discrepan-
cies has not been systematically explored to date. We compared three WGS-based
bioinformatics methods (Genefinder [read based], Mykrobe [de Bruijn graph based],
and Typewriter [BLAST based]) for predicting the presence/absence of 83 different
resistance determinants and virulence genes and overall antimicrobial susceptibility
in 1,379 Staphylococcus aureus isolates previously characterized by standard labora-
tory methods (disc diffusion, broth and/or agar dilution, and PCR). In total, 99.5%
(113,830/114,457) of individual resistance-determinant/virulence gene predictions
were identical between all three methods, with only 627 (0.5%) discordant predic-
tions, demonstrating high overall agreement (Fleiss’ kappa � 0.98, P � 0.0001). Dis-
crepancies when identified were in only one of the three methods for all genes ex-
cept the cassette recombinase, ccrC(b). The genotypic antimicrobial susceptibility
prediction matched the laboratory phenotype in 98.3% (14,224/14,464) of cases
(2,720 [18.8%] resistant, 11,504 [79.5%] susceptible). There was greater disagreement
between the laboratory phenotypes and the combined genotypic predictions (97
[0.7%] phenotypically susceptible, but all bioinformatic methods reported resistance;
89 [0.6%] phenotypically resistant, but all bioinformatics methods reported suscepti-
ble) than within the three bioinformatics methods (54 [0.4%] cases, 16 phenotypi-
cally resistant, 38 phenotypically susceptible). However, in 36/54 (67%) cases, the
consensus genotype matched the laboratory phenotype. In this study, the choice
between these three specific bioinformatic methods to identify resistance determi-
nants or other genes in S. aureus did not prove critical, with all demonstrating high
concordance with each other and phenotypic/molecular methods. However, each
has some limitations; therefore, consensus methods provide some assurance.

KEYWORDS Staphylococcus aureus, antibiotic resistance, bioinformatics, whole-
genome sequencing

Staphylococcus aureus causes both superficial infections (such as boils) and life-
threatening disease, including septicemia (1). There were 11,405 S. aureus bactere-

mias in England in 2015 and 2016 (2); 7.2% were methicillin-resistant S. aureus (MRSA),
which has increased costs and poorer patient outcomes (3). Fast accurate resistance

Received 20 November 2017 Returned for
modification 4 December 2017 Accepted 9
May 2018

Accepted manuscript posted online 20
June 2018

Citation Mason A, Foster D, Bradley P,
Golubchik T, Doumith M, Gordon NC, Pichon B,
Iqbal Z, Staves P, Crook D, Walker AS, Kearns A,
Peto T. 2018. Accuracy of different
bioinformatics methods in detecting antibiotic
resistance and virulence factors from
Staphylococcus aureus whole-genome
sequences. J Clin Microbiol 56:e01815-17.
https://doi.org/10.1128/JCM.01815-17.

Editor Nathan A. Ledeboer, Medical College of
Wisconsin

Copyright © 2018 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Dona Foster,
dona.foster@ndm.ox.ac.uk.

* Present address: Amy Mason, Department of
Mathematics and Department of Statistics,
University of Oxford, Oxford, United Kingdom;
Tanya Golubchik, Wellcome Trust Centre for
Human Genetics, University of Oxford, Oxford,
United Kingdom; N. Claire Gordon, KEMRI-
Wellcome Trust Collaborative Research
Programme, Kilifi, Kenya.

A.M., D.F., P.B., T.G., and M.D. contributed
equally to this article, as did A.S.W., A.K., and T.P.

For a commentary on this article, see https://
doi.org/10.1128/JCM.00813-18.

BACTERIOLOGY

crossm

September 2018 Volume 56 Issue 9 e01815-17 jcm.asm.org 1Journal of Clinical Microbiology

https://orcid.org/0000-0001-8266-3630
https://doi.org/10.1128/JCM.01815-17
https://doi.org/10.1128/ASMCopyrightv2
mailto:dona.foster@ndm.ox.ac.uk
https://doi.org/10.1128/JCM.00813-18
https://doi.org/10.1128/JCM.00813-18
https://crossmark.crossref.org/dialog/?doi=10.1128/JCM.01815-17&domain=pdf&date_stamp=2018-6-20
http://jcm.asm.org


prediction is key to managing S. aureus infections. Molecular-based methods directed
at detecting specific genes, e.g., through rapid multiplex PCR and microarrays, can
reduce the time to identify resistance determinants and the time on broad-spectrum
antibiotics (4–6). However, they require specific primers that impact sensitivity and
specificity.

In principle, whole-genome sequencing (WGS) has the potential to predict pheno-
typic resistance directly from the genotype, replacing laboratory-based phenotypic
tests (7). Several studies report high concordance between genotypic predictions based
on known or novel resistant determinants and phenotypic methods (8–13). However,
these studies used various sequence-processing pipelines and bioinformatics methods
to identify in silico resistance determinants. Without formal comparisons between the
various methods, it is unclear whether the underlying differences affect results or
whether differences in methodology could cause some of the observed discrepancies
between genotypic predictions and phenotype.

Therefore, we compared three WGS-based bioinformatics methods (Genefinder
[read based], Mykrobe [de Bruijn graph based], and Typewriter [BLAST based]) in terms
of predictions of the presence/absence of different resistance determinants and the
overall prediction of antimicrobial susceptibility and the presence/absence of virulence
genes from short-read Illumina WGS.

MATERIALS AND METHODS
Three sets of S. aureus isolates with known high-quality phenotypes were analyzed: derivation, n �

501, and validation, n � 491, sets (denoted Oxford derivation/validation) from blood cultures and nasal
swab isolates at the Oxford Radcliffe Hospitals NHS Trust and Brighton and Sussex University Hospitals
NHS Trust, spanning a period of 13 years, sequenced for an initial assessment of genotypic prediction of
susceptibility phenotype in S. aureus (9, 10) and 397 isolates that had been referred to the Public Health
England (PHE) reference laboratory for investigation (denoted Colindale 397; NCBI BioProject number
PRJNA445516). The Oxford derivation set had previously been used in the development of Typewriter
and Mykrobe but not Genefinder; the former methods were then applied to the Oxford validation set.

The phenotypes for Oxford derivation/validation isolates were determined by disc diffusion and/or
automated broth diffusion (BD Phoenix), with discrepancies between phenotype and genotype resolved
as described previously (11). All PHE isolates (n � 397) were subjected to MIC testing by the PHE
Staphylococcal Reference Laboratory using the agar dilution method (14). In addition, the mecA-mecC
status and virulence gene profile of the PHE isolates was determined by PCR or microarray testing as
described previously (15). The European Committee on Antimicrobial Susceptibility Testing (EUCAST)
thresholds were used to determine the sensitivity or resistance for each phenotype (http://www.eucast
.org/clinical_breakpoints).

All Oxford derivation/validation isolates were sequenced using the Illumina HiSeq 2000 platform as
previously described (16). PHE samples were sequenced in an Illumina HiSeq 2500 platform as described
previously (17) (both 150-bp reads). Samples determined as mixed based on WGS were excluded from
further analysis. For quality control of sequences at PHE, trimmomatic software was used (Illumina
adapter removed, leading and trailing quality threshold set to 30, and minimum length of read set to 50
bases) (18). Isolates from Oxford analyzed by Typewriter were mapped and de novo assembled with
exclusion parameters of �70% coverage of the reference genome for mapping and �50% of the
genome in contigs �1 kb (10). Mykrobe processes raw sequence data with no prior cleaning of the data.
The isolates came from 111 sequence types, including 29 new sequence types (STs)/alleles, covering the
range of S. aureus genomic diversity as previously described in Oxfordshire.

Three programs, Genefinder (M. Doumith, PHE, not published), Mykrobe (P. Bradly, version v0.3.13-
2-gd5880fa, open-source at https://github.com/iqbal-lab/Mykrobe-predictor), and Typewriter (T. Golub-
chik, MMM group, Oxford University; version 2.0, https://github.com/tgolubch/typewriter) (Table 1), were
compared to determine presence/absence of resistance determinants (genes or variants) and toxin genes
(Tables 2, 3, and 4). Mykrobe is part of the automated processing with the Complete Pathogen Software
Solution (COMPASS) developed at the University of Oxford. This returns quality and depth of sequence
metrics, maps against a reference (MRSA 252, GenBank accession no. BX571856.1) using Stampy (19) and
performs de novo assembly using Velvet v1.0.18 (20). These de novo assemblies formed the basis for the
Typewriter program, whereas Genefinder used the raw sequencing reads.

Although all three methods search for matches to a predefined list of alleles, they have different
approaches to their identification (further details below). Genefinder and Mykrobe required fastq files,
whereas Typewriter used BLAST use de novo assemblies. All used preset thresholds to detect genes.
Thresholds are adapted for certain genes (e.g., blaZ, which can be chromosomally integrated or carried
on plasmids) to improve the prediction and for quality control. Both Typewriter and Mykrobe identified
the presence or absence of each target singly, whereas Genefinder identified which of closely related
homologs is most plausibly present. Genefinder and Mykrobe were very fast, between 1 and 3 min, and
can be used on a standard desktop computer (specification of a 2.3-GHz processor and 16-GB memory).
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Typewriter, as it requires de novo assembly, took up to 3 h and used cloud computing or high-capacity
servers.

Genefinder was written by M. Doumith. It used a mapping approach (similar to SRST2, https://github
.com/katholt/srst2) to detect the presence or absence of predefined genes or variations in predefined
genes using Bowtie. The thresholds were defined at 90% overall, but amended where required in order
to distinguish between both variants where genes were represented with multiple reference sequences
and the level of diversity expected for each gene sought. Genefinder also checked for premature stop
codons and compared the average depth of read coverage to identify any potential sequence contam-
ination.

Mykrobe was written by P. Bradley and Z. Iqbal (9). A threshold frequency was generated for each
gene (K minimum percentage) based on the empirical level of diversity observed in the training set
described by Bradley (K � 0.3 for blaZ, K � 0.6 for fusB and fusC, K � 0.8 otherwise). The maximum
likelihood from 3 models (gene absent, gene present in minor proportion, gene present) was chosen. The
models took into account the expected proportion of kmers based on the depth of coverage and
empirical level of diversity (described in reference 9). Mutations were genotyped by choosing the
maximum likelihood model from 3 Poisson models comparing the depths of coverage across 63-bp

TABLE 1 Overview of Genefinder, Mykrobe, and Typewriter methods and requirements

Characteristics Genefinder Mykrobe (9) Typewriter (10)

Method Maps raw reads to list of target
alleles using Bowtie

Looks for list of target alleles in
de Bruijn assembly graph

Blasts list of target alleles against
de novo assembliesa

Input Fastq file Fastq file Genome assembly output (Velvet)
Required homology to declare

gene presence/absence
�90% to target allele Based on kmer recovery: K is

minimum percentage
expected to be recovered for
a gene; K � 0.3 for blaZ, K �
0.6 for fusB and fusC, K � 0.8
otherwise

�90% relative coverage
(homology by length) (80% for
blaZ)

Required homology to declare SNP �90% to target: can be modified 100% of 63-kmers required to
call a variant present

�90% to target: can be modified

Prediction of stop codons in genes
present

Yes No: there is no assembly Yes

Reads can be mapped to Multiple targets Single target Single target
Speed/processor 1 to 3 min on laptop with 2.3-

GHz processor and 16-GB
memoryb

2 min on laptop with 2.3-GHz
processor and 16-GB
memory

3 h for assemblies on cloud
computational system, then a
few minutes for BLAST

Sequence quality control Threshold adjusted if gene has
multiple reference sequences
or variable level of diversity;
can detect potential
contamination by comparing
avg depth of coverage

Can identify mixtures of
different species and same
species

Thresholds for N50 and parallel
reference-based mapping:
nothing reported if below
these thresholds

aUsing blastn for sequence identity and tblast for mutations.
bGenefinder speed is relative to the number of genes present in the database.

TABLE 2 Predicted antibiotic susceptibility phenotypes from WGS by Genefinder, Mykrobe, and Typewriter

Antibiotic

Susceptibility prediction for Genefinder, Mykrobe, and Typewriter (n)a
Discordant across
methods (n [%])RRR SSS RRS RSR RSS SRS

Ciprofloxacin 304 1,072 0 2 0 1 3 (0.2)
Clindamycin 338 1,024 7 0 0 10 17 (1.2)
Erythromycin 354 1,011 6 0 0 8 14 (1.2)
Fusidic acid 151 1,221 4 0 0 3 7 (0.5)
Gentamicin 76 1,300 1 0 0 2 3 (0.2)
Methicillin 393 984 2 0 0 0 2 (0.1)
Mupirocin 15 1,362 0 0 2 0 2 (0.1)
Penicillin 1,161 211 3 0 0 4 7 (0.5)
Rifampin 23 1,354 0 1 0 1 2 (0.1)
Tetracycline 121 1,249 4 0 0 5 9 (0.7)
Trimethoprim 175 1,199 3 1 0 1 5 (0.4)
Vancomycin 0 1,379 0 0 0 0 0 (0.0)

Total (% of 16,548) 3,111 (18.8) 13,366 (80.8) 30 (0.2) 4 (0.02) 2 (0.01) 35 (0.2) 71 (0.4)
an � 1,379. R, resistant; S, susceptible.
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reference and alternate alleles while demanding 100% coverage across the allele, also described in
reference 9.

Typewriter was developed by T. Golubchik (described in reference 10). It considered BLAST results
over a query reference (blastn for sequence identity, tblastn for mutations). It used a “relative coverage”
to determine presence/absence of a gene, a metric that gives equal weights to coverage and sequence
identity. Typewriter reported this value for each query gene of interest, and cutoffs were adjusted to
optimize the specificity/sensitivity for different genes. In this study, a relative cutoff of 90% for resistance
and toxin genes was used except blaZ, for which a cutoff of 80% was used. For variant reporting,
mutations were reported above a given threshold of relative coverage (e.g., 90%); however, this could be
changed or set to 0% to report all identified differences from the query sequence. Stop codons were
predicted, as were novel mutations.

Eighty-four genes were included in the analysis; 46 acquired resistance genes, 5 sets of chromosomal
variants within resistance-associated genes, 5 cassette chromosome recombinase genes (ccr), and 28
virulence genes (Tables 2, 3, and 4). Acquired resistance genes were classified as present (p, P) or absent
(a, A), setting 3 missing Genefinder predictions (“ND” or “X”) to absent. Chromosomal resistance variants
were those listed in Table S4 in the supplemental material; 23 other mutations were reported in the
relevant genes but were not compared, as they are not considered resistance-determinants (Table S4 in
the supplemental material). For all methods, genotype predictions of susceptibility phenotypes were
based on the presence of any relevant resistance determinant as shown in Tables 2, 3, and 4 (as described
in reference 10 with minor modifications and updates from reference 9). Intermediate phenotype results
were excluded from analysis (80 cases [0.5%]).

RESULTS

Short-read Illumina WGS data were available from 1,389 samples; 992 from a
collection held in Oxford (previously described by Gordon et al. [9, 10]) and 397 from
Public Health England (PHE) Staphylococcus Reference Service, Colindale. Ten samples
were excluded due to mixed/contaminated WGS results, leaving 1,379 for analysis.
Samples were analyzed by Genefinder and Typewriter (Table 1) after sequence map-
ping and variant calling and by Mykrobe from raw fastq reads.

Eighty-four genes were included: 46 acquired resistance genes, 5 sets of chromo-
somal variants within genes associated with resistance, 3 cassette chromosome recom-
binase, ccrA, ccrB, and ccrC, including three variants of ccrC [ccrC(a), ccrC(b), and ccrC(c)],
and 28 virulence genes (see Table S1 in the supplemental material). Overall, 99.5%
(113,830/114,457) of the individual resistance determinant/virulence gene predictions
were identical between all three methods (Fig. 1; Table S1), with only 627 (0.5%)
discordant predictions, demonstrating high overall agreement (Fleiss’ kappa � 0.98,
P � 0.0001). Overall, one method disagreed with both other methods in 0.23% for

TABLE 3 Predicted phenotype for antimicrobial susceptibility

Laboratory
phenotypea

Antimicrobial susceptibility prediction from Genefinder,
Mykrobe, Typewriter (n)b

Total (n)RRR SSS RRS RSR RSS SRS

R 2,720 89 9 3 0 4 2,825
S 97 11,504 13 1 2 22 11,639

Total 2,817 11,593 22 4 2 26 14,464
aR, resistant; S, susceptible.
bNot all isolates were phenotyped for all antimicrobials; therefore, total with phenotypes (14,464) is less than
the total with genotypic predictions (16,548) in Table 2. Boldface font shows complete concordance, and
italic font indicates a majority concordance between predictions.

TABLE 4 Predicted genotype for virulence genes, ccr genes, and mecA-mecC

PCRa

Prediction from Genefinder, Mykrobe, and Typewriter (n)b

Total (n)AAA PPP APA PPA

A 3,362 82 10 17 3,475
P 14 618 2 10 643

Total 3,376 700 12 27 4,115
aA, absent; P, present.
bOnly PHE isolates had PCR results for some virulence genes. Boldface font shows complete concordance,
and italic font indicates a majority concordance between predictions.
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Typewriter (263/114,457 predictions), 0.16% for Mykrobe (183/114,457), and 0.16% for
Genefinder (181/114,457). The three most common discrepancies for Typewriter were
the nondetection of virulence genes identified by other methods (seu, 57 samples; chp,
46 samples; sei, 33 samples). Similarly, for Genefinder, the three most common discrep-
ancies were nondetection of resistance genes (qacB, 44 samples; dfrC, 34 samples) or
other genes (ccBb, 22 samples) identified by other methods. Genefinder reported the
presence of dfrA, qacA, or ccrC(b) genes in these samples. In contrast, Typewriter and
Mykrobe reported the presence of two dfr, two qac, and three ccrC genes, where the
detected variants for each of these three genes shared more than 90% nucleotide
identity. The most common discrepancies for Mykrobe were identifying resistance/
other genes as present when the other two methods called them absent (aadE–ant(6)-
Ia, 28 samples; blaZ, 19 samples; ccrCB, 22 samples). No gene was ever identified as
present by Typewriter alone. Fourteen of the 84 genes had �1% discrepancies (max-
imum, 4.3% for seu), but the majority of discrepancies were in only one method for all
genes except ccrC(b).

Discrepancies were similar in acquired resistance genes (0.3% [221/63,434]) and
chromosomal resistance genes (0.1% [8/5,516]), but slightly larger for ccr genes (1.8%
[123/6,895]) and virulence genes (0.7% [275/38,612]) (see Table S2). The percentage
discrepancies varied modestly across the different sample sets, being higher for the
PHE set (1.1% [349/32,928]; particularly for ccr genes with 4.2% [83/1,960] discrepan-
cies), intermediate for the Oxford derivation set (0.6% [233/42,084]) and lowest for the
Oxford validation set (0.1% [45/40,824]) (Table S2).

Genotypic predictions of antimicrobial susceptibility were also identical in 99.6% of

FIG 1 Determinant-by-determinant disagreements between methods. Each panel shows percentage differences in proportions of the detected presence of
each determinant between the first method and the second.
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cases (16,477/16,548 predictions) (Table 2). Of the 71 discrepancies in susceptibility
prediction between the methods, 42% (30/71) occurred with Typewriter reporting
susceptible when Genefinder and Mykrobe reported resistant, and 49% (35/71) oc-
curred with Mykrobe reporting resistant where Genefinder and Typewriter reported
susceptible.

Comparing genetic predictions to laboratory phenotypes (restricted to samples
either phenotypically resistant or susceptible), in 98.3% (14,224/14,464) of cases, all
three bioinformatics methods and the gold standard laboratory results agreed com-
pletely (2720 [18.8%] resistant, 11,504 [79.5%] susceptible) (Table 3 and Fig. 2). There
was greater disagreement between the laboratory phenotypic results and the com-
bined genotypic predictions than within the three bioinformatics methods. In 97 (0.7%)
instances, the laboratory phenotype was susceptible, but all bioinformatic methods
reported resistance. Of these, 33% (32/97) were for penicillin, 23% (22/97) for clinda-
mycin, and 11% (11/97) for erythromycin, with smaller numbers for fusidic acid (7),
tetracycline (6), mupirocin (6), methicillin (5), ciprofloxacin (4), gentamicin (3), and
rifampin (1), and none for trimethoprim. In 89 (0.6%) instances, the laboratory pheno-
type was resistant, but all three bioinformatics methods reported susceptible, most
commonly to gentamicin (21% [15/89]), ciprofloxacin (17% [15/89]), and fusidic acid
(15% [13/89]). The remaining 54 (0.4%) cases (16 phenotypically resistant, 38 pheno-
typically susceptible) had different genotypic predictions made from the different
methods. However, in 36/54 (67%), the consensus genotype (predicted by two of the
three methods) matched the laboratory phenotype.

PCR/array results were available for some virulence genes (15) and mecA-mecC for all

FIG 2 Antimicrobial susceptibility genotypic predictions compared to phenotype.

Mason et al. Journal of Clinical Microbiology

September 2018 Volume 56 Issue 9 e01815-17 jcm.asm.org 6

http://jcm.asm.org


397 PHE isolates. Compared with genetic predictions, in 96.8% (3,983/4,115) of cases, all
three bioinformatics methods and the PCR/array results agreed completely (3,364
[81.7%] absent, 619 [15.0%] present) (Table 4; see also Fig. S1). As for antimicrobial
resistance, there was greater disagreement between the laboratory PCR/array results
and the combined genotypic predictions than within the three bioinformatics methods,
with 81 (2.0%) cases where all three methods called a gene present that had not been
detected by PCR/array and 12 (0.3%) where no method called a gene present that had
been detected by PCR/array, in comparison with 39 (0.9%) discrepant predictions
between the methods. In 20/39 (51%) cases, the consensus genotype matched the
PCR/array result.

The sensitivity and specificity of all three bioinformatics methods compared to
laboratory phenotypic methods in predicting antimicrobial susceptibility were very
similar. Across the 14,464 genotypic predictions, Typewriter had the lowest overall
sensitivity (0.964 [95% CI, 0.956 to 0.970]), but the highest specificity (0.992 [0.990 to
0.993]), while Mykrobe had higher sensitivity (0.967 [0.960 to 0.974]) and the lowest
specificity (0.989 [0.987 to 0.990]). Genefinder’s performance fell between that of
Mykrobe and Typewriter for specificity (0.990 [0.988 to 0.992]), with a sensitivity equal
to that of Mykrobe (0.967 [0.960 to 0.973]). Specificity and sensitivity varied across the
different antibiotics (Fig. 3), but were broadly similar between the three methods,
overall and within each data set (see Table S3). There were no vancomycin-resistant
isolates identified by either phenotyping or bioinformatics methods. Similarly, speci-
ficity and sensitivity to identify PCR-detected virulence and other genes varied across
the different genes, but were broadly similar between the three methods (see Fig. S2).

DISCUSSION

While WGS is increasingly used to detect antibiotic resistance and virulence deter-
minants, to our knowledge, this is the first study that compares three methods for
predicting genotypes of large numbers of isolates. As discussed in the recent European
Committee on Antimicrobial Susceptibility Testing (EUCAST) report (21), discordance
can occur between phenotypic and genotypic resistance due to inadequate limits of
detection for WGS methods, incomplete understanding of the genotypic basis of
phenotypic resistance, flaws with the phenotypic or molecular (e.g., PCR) methods

FIG 3 Sensitivity and specificity of genotypic predictions of antimicrobial susceptibility.
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currently used to detect resistance, and/or WGS failures, including the lack of assembly
caused by multiple operons or similar sequences, incomplete gene coverage, nonfunc-
tional genes (e.g., due to the presence of stop codons/indels), or cropped contigs.

Here, we found that three different approaches for identifying genetic determinants of
resistance and virulence (Genefinder, Mykrobe, and Typewriter) agreed in 99.5% of predic-
tions. Genefinder and Mykrobe were fast, taking under 5 min, whereas Typewriter, while
also taking a few minutes per sample, required an initial genome assembly that increased
the turnaround time by up to 3 h. Mykrobe and Typewriter are freely available (https://
github.com/iqbal-lab/Mykrobe-predictor and https://github.com/tgolubch/typewriter,
respectively); Genefinder is not, but the underpinning methods are relatively straight-
forward, and the freely available SRST2 (https://github.com/katholt/srst2) follows an
analogous mapping approach (22), which would likely provide very similar results with
the same catalogue. Previous comparisons of bioinformatics methods relevant to the
microbiology community are limited. Bradley et al. (9) found good concordance
between Mykrobe and SeqSphere (23), an allele-based method that detects the pres-
ence/absence of a limited number of resistance and virulence markers. SeqSphere took
longer than Mykrobe as, like Typewriter, it uses Velvet assemblies. Other previous
studies have shown 100% concordance between the resistome and toxome in 14 MRSA
isolates (24), 98.6% concordance across 5,288 susceptibility predictions in 308 S. aureus
isolates (both MRSA and MSSA) (25), 100% concordance for selected resistance and
toxin gene presence/absence in 18 MRSA strains (23), and 97% and 97% sensitivity and
specificity, respectively, for Typewriter and 99.1% and 99.6% sensitivity and specificity,
respectively, for Mykrobe for predicting phenotypic resistance in the Oxford validation
samples used here (9, 10). A comparison between microarray and WGS in 154 isolates
reported 1.7% discordancy in detecting resistance and virulence genes (26), mainly due
to the failure of WGS to detect enterotoxins and super antigens (similar to that for
Typewriter in this study).

Individually, the three programs demonstrated high concordance, but interestingly,
in almost all genes, only one of the three bioinformatics methods did not identify a
determinant that the other two methods did identify, or vice versa. The most common
discrepancy with Typewriter was the failure to identify virulence genes identified by
Mykrobe and Genefinder (namely, seu, chp, and sei). Two of these genes, sei and seu, are
located on the enterotoxin gene cluster (egc) (27, 28), referred to as an enterotoxin
gene nursery (29), and the other, chp, is located on a prophage (30). Such regions may
be particularly susceptible to recombination (31, 32) and paralogs. As Typewriter uses
BLAST, it may have a higher chance of detecting one of multiple closely related genes
than the other two methods.

Similarly to Typewriter, the most common discrepancy with Genefinder was a failure
to identify genes reported by Typewriter or Mykrobe, particularly, ccrB, qacB (quater-
nary ammonium compound B, conferring resistance to chlorhexidine [33] via an efflux
drug pump, but differing from another gene, qacA, by only seven nucleotides [34]), and
dfrC (a dihydrofolate conferring resistance to trimethoprim believed to be the origin of
the more common transposon-associated drfA gene). The fact that Genefinder identi-
fied only one variant of acquired dfr and qac may indicate that the other two methods
were misidentifying paralogs (35). Alternatively, as Genefinder detects predetermined
alleles, the recombination of partial genes or differences in flanking sites or genomic
variation alone may reduce its ability to detect some genes. One advantage of
Genefinder is its ability to detect variations in multicopy genes such as the rRNA
encoding genes associated with linezolid resistance in staphylococci.

In contrast, Mykrobe most commonly identified a determinant that other methods
did not, particularly, aadE(ant6=)-Ia, an adenyltransferase encoding resistance to amin-
oglycosides. This gene is associated with small plasmids flanked by direct repeats of
staphylococcal insertion sequence IS257 (36). Although Mykrobe is kmer based, it
requires a high match across the whole gene, not just flanking sequences, and so the
reason for this is unclear. Mykrobe also had a higher false-positive rate in blaZ, as
reported previously (9). Although this was previously attributed to phenotypic errors,
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the fact that neither Genefinder nor Typewriter identified blaZ in these isolates suggests
the algorithm/threshold may need adjusting for this gene. Mykrobe also had a high
false-positive rate for the ccrCB gene, which is part of the cassette chromosome
recombinase (ccr) associated with SSCmec (37). As all ccrC genes share �87% similarity
and were not included in the original Mykrobe implementation, further investigation
and modification of sequence identity thresholds may be required to accurately classify
this gene, whose different alleles can have 60% to 82% sequence identity.

Overall, the comparison highlights key challenges inherent in all methods. First are
the trade-off between specificity and sensitivity to detect specific genes/variants and
the need for adjustment based on specific features, such as the proximity to repetitive
elements or similarity with other alleles. Specific genes may also require different
approaches, e.g., the ccr genes were the most discordant overall in the study. These
genes were more often present in the staphylococcal reference laboratory isolates,
increasing the overall error rates for this sample set. Reference libraries of genes/
variants also require frequent updating with new alleles, and appropriate thresholds
must be set to enable separate copies of closely related genes (e.g., qacA and qacB) to
be detected if genuinely present. Taking the consensus prediction across the three
different bioinformatics methods is one strategy for balancing these different trade-
offs. As error rates were low overall, this only improved the genetic predictions slightly,
but in samples where the susceptibility is unknown, it could be valuable, particularly if
the two fast implementations (Genefinder and Mykrobe) are used, followed by the
slower assembly-based method only if they disagree.

Our main findings were that the largest discordance occurred between phenotype
and genotype regardless of the method used to predict genotype and that the
“consensus” genotypic prediction agreed with the phenotype in two-thirds of the small
number of cases where bioinformatics methods made different predictions. Where
bioinformatics methods are concordant but disagree with phenotype, the unresolved
question is which is “correct,” in terms of a drug achieving clinical cure in a patient
infected with this strain. Penicillin and clindamycin/erythromycin were most likely to be
called resistant by all methods but susceptible by phenotyping. Previous studies of
erythromycin and clindamycin resistance have reported positive ermC PCR results from
nondetectable resistance phenotypes (38) and have suggested that plasmids confer-
ring resistance to these antibiotics may be lost in subculture (9, 39). Sensitivity to
penicillin by phenotypic methods where genotype methods predict resistance has
been reported previously (40, 41), and the evidence suggests that phenotyping under-
reports resistance. The EUCAST guidelines illustrate the challenges in distinguishing
between penicillin-resistant and -susceptible isolates based on fuzzy versus sharp zones
(42). Overall, therefore, it is plausible that the genetic detection of resistance may reflect
more closely the impact of the strain on a patient.

An interpretation where phenotyping reports resistance but WGS methods predict
susceptibility is more difficult. One possibility is small colony variants (SCV) being
present phenotypically but overgrown in WGS culture and thus not represented in the
sequence. Resistance associated with gentamicin, fusidic acid, and ciprofloxacin, the
main antibiotics where this phenomenon was observed, is observed with SCV pheno-
types (43, 44). An alternative explanation is novel resistance mechanisms, for example,
for ciprofloxacin (45), leading to false-negative WGS predictions. The need for a
continuously updated curated database is a key challenge for WGS methods. As more
sequencing occurs, novel mutations will be identified in resistance genes that may or
may not confer phenotypic resistance, but these can at least be identified and tested;
identifying entirely new resistance-conferring genes is more complex, and prediction
software that can recognize new clinically important genes a priori would be a valuable
addition to an analysis pipeline. However, we observed similar differences between
concordant genotypic predictions and both phenotypic antimicrobial susceptibilities
and single gene PCR results, suggesting that the underlying causes may not necessarily
be related to resistance. As previously noted, the agreement between WGS and
phenotyping is higher (98.6%) than between phenotyping undertaken by two separate
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laboratories (97.6%) (25); thus, at least some discrepancies are probably due to incorrect
phenotyping results. In contrast, the concordance between genotypic predictions
made using a single method but based on WGS generated from 5 different laboratories
was recently shown to be �99.8% (46).

Limitations. This comparison was based on a prespecified set of resistance- or
virulence-associated genes: some genetic traits previously associated with resistance
were omitted (e.g., IleS mutations linked to low-level mupirocin resistance). Despite this,
we found good agreement between genotypic predictions and phenotype. Typewriter
used Velvet de novo assemblies: other newer assemblers (e.g., SPADES [47]) might have
improved predictions further. We included data which had been used in the develop-
ment of two of the methods compared, which could potentially have led to overfitting,
although the performances of all three methods were in fact similar on this data set (see
Table S2 in the supplemental material). All analyses were undertaken on short-read
Illumina data. The increasing use of long-read sequences will require further software
testing, although Mykrobe has been successfully used for initial resistance calling in
Mycobacterium tuberculosis from Nanopore sequencing in a small number of samples
(48). However, it has not been comprehensively tested, nor have Typewriter and
Genefinder, with long-read sequences generated using Nanopore or PacBio technol-
ogy. The greatest differences detected in this study were between phenotype and
genotype, which could be partly due to the method of phenotypic testing and
recognized issues with reproducibility. We did not have resources to rephenotype all or
a subset of the isolates; well-characterized sets of repeatedly phenotyped isolates
would be useful for further studies. We found no suggestion that missing calls in one
program were associated with scores just below a threshold but did not undertake a
more detailed assessment of specific sequence coverage and quality around discrepant
genetic predictions.

Conclusion. In summary, in this study, the choice between three specific bioinfor-
matics methods to identify resistance determinants or other genes in S. aureus did not
prove critical. All demonstrated a high concordance with each other and with pheno-
typic methods and can be recommended for genotype prediction. However, each has
some limitations; therefore, consensus methods provide at least some assurance. Due
to computational speed, Mykrobe (de Bruijn graph based) and Genefinder (or equiva-
lent mapping-based program such as SRST2 [22]) are a sensible combination to use as
an initial consensus method, followed by Typewriter (BLAST based) if these two
methods disagree. As a set of 34 diverse bacteria have been made available for
whole-genome sequencing validation (49), the study strains and genotypic predictions
are available as a resource for other studies investigating different bioinformatics
analysis methods, which will become increasingly important as this technique is more
widely used to inform clinical management, through bacterial identification, antimi-
crobial susceptibility prediction, and virulence profiling. External quality control of
clinical laboratory performance in predicting antibiotic resistance is provided by UK
proficiency testing schemes such as the United Kingdom National External Quality
Assessment Service for Microbiology (UK NEQAS) (50); a similar set of standards will
need to be created to accredit whole-genome sequencing methods.
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